
WNLT version 2.3 19 April 2017

1

Organisation Hypermedia Research Group, University of South Wales.

Project Team Daniel Cunliffe, Douglas Tudhope, Andreas Vlachidis, Daniel Williams

Funding Body Welsh Government, under the Welsh-language Technology and Digital
Media Grant scheme.

This user guide provides background material and documentation for the Welsh Natural

Language Toolkit.

Version 2.3 of the toolkit provides functionality which allows the toolkit to be used outside

the GATE environment via a graphical user interface, command line interface or API. Version

2.3 of the toolkit also added support for Twitter.

This user guide will first discuss the CymrIE information extraction system and all of its

processing resources in the chapter 1. Chapter 2 outlines the steps on how to set up WNLT’s

CymrIE information extraction system in the GATE Developer (GUI) application. This user

guide will then describe how to use the WNLT’s graphical user interface (GUI), command

line interface (CLI) and application programming interface (API) in chapters 3, 4 and 5

respectively. Lastly, chapter 6 provides information about the added support for the CymrIE

information extraction system for Twitter.

The WNLT is distributed with the GNU Lesser General Public License version 3.

Manual
version

Description of changes

2.X Added documentation for WNLT’s GUI, CLI and API (chapters 3, 4 and 5). Add
documentation for TwitterCymrIE. Created Welsh version of this User guide

1.X Created documentation for WNLT’s CymrIE information extraction system and
added documentation for using the CymrIE information extraction system in
GATE Developer (chapters 1 and 2).

Authors Daniel Williams and Andreas Vlachidis

WNLT version 2.3 19 April 2017

2

Table of Contents
1. Background .. 3

1.1. Tokenizer ... 3

1.2. Sentence Splitter ... 4

1.3. Part of Speech Tagger ... 5

1.4. Morphological Analyser (Lemmatizer) .. 7

1.5. CymrIE ... 8

2. Using the WNLT in GATE Developer (GUI) ... 11

2.1. Loading WNLT in GATE .. 11

2.2. Loading the CymrIE system in GATE.. 12

2.3. Adding a New Corpus in GATE .. 16

3. WNLT’s graphical user interface (GUI) ... 20

3.1. Functionality .. 20

3.2. Menu ... 23

4. WNLT’s command line interface (CLI) .. 24

5. WNLT API.. 25

5.1. Setting up the WNLT API ... 25

5.2. Using the CymrIEUtilities class .. 29

5.3. Using the CymrIE class ... 36

6. TwitterCymrIE .. 38

6.1. Annotation set transfer ... 38

6.2. TextCat Language identification .. 40

6.3. Emoticons Gazetteer ... 41

6.4. Hashtag tokenizer.. 42

6.5. Tweet Normaliser .. 43

6.6. GATE Developer .. 43

6.7. WNLT’s GUI.. 44

6.8. WNLT’s CLI ... 45

6.9. WNLT API ... 46

WNLT version 2.3 19 April 2017

3

1. Background
The Welsh Natural Language Toolkit (WNLT) contains a set of four core Natural Language

Processing (NLP) processing resources that enable the development of generic

computational linguistic applications and contribute to the Welsh language technology

infrastructure a much needed open source NLP toolkit. The project builds on the General

Architecture for Text Engineering (GATE) by adapting and expanding existing processing

resources (plugins) to Welsh.

The Toolkit contains the following four processing resources:

 Tokenizer

 Sentence Splitter

 Part of Speech Tagger

 Morphological Analyser

The processing resources benefit from a combination of glossaries with algorithmic

arrangements that address specific linguistic behaviours of the Welsh language.

1.1. Tokenizer

The WNLT Tokenizer extends the default GATE Tokenizer and similarly splits the text into

very simple tokens such as numbers, symbols and words of different types. The Tokenizer

distinguishes words in uppercase, lowercase, and between types of symbols. The processing

resource uses a slightly modified version of the original GATE Tokenizer rules file and an

extended JAPE post-processing transducer adapting the generic output of the Tokenizer to

the requirements of the Welsh part-of-speech tagger.

1.1.1. Token Types

The WNLT Tokenizer delivers the same types of Tokens and Space Tokens with default

ANNIE Tokenizer as listed below:

 [Word] including the attribute 'orth' that takes the values; upperInitial, allCaps,

lowerCase, mixedCaps

 [Number] any combination of consecutive digits.

 [Symbol] any special character is a symbol

 [Space Token] white spaces which are divided into two types of SpaceToken - space

and control

1.1.2. Welsh Tokenizer Modifications

The Welsh Tokenizer uses a modified version of the GATE Tokenizer file

'AlternateTokeniser.rules' which originally splits hyphenated and apostrophised cases into

separate tokens. This behaviour is desirable due to the extensive and elaborate use of

hyphens and apostrophe in Welsh which differs significantly from English, for example use

of hyphens in adjectival compounds. A succeeding post-processing transducer joins under a

http://www.gate.ac.uk/
http://www.gate.ac.uk/
https://gate.ac.uk/sale/tao/splitch6.html#sec:annie:tokeniser

WNLT version 2.3 19 April 2017

4

single token several types of hyphenated and apostrophised constructs. The modified

version also merges punctuation and symbol under a single Token type named 'symbol'.

The modified post-processing transducer joins together in a single token the following

constructs:

 Hyphenated place names e.g. Llanarmon-yn-Ial

 Compounds of the common prefix e.g. ad-dala, cyd-ddefnyddir, rhag-glorineiddia

 Separate constituents hyphenation for the cases d+d, d+dd, dd+d, dd+dd, ff+f, ng+g,

g+g, l+l, ll+l, t+h e.g. ladd-dy, cybydd-dod, cyd-dyfu, hwynt-hwy

 Apostrophe loss of vowel initialy e.g. 'Deryn

 Apostrophe loss of vowel medially eg. i'engoed

 Apostrophe loss of final consonant e.g. cry' for cryf hapusa' for hapusaf

 Apostrophe for common contractions, cases:i,m,n,r,w,ch,th

 Ordinals e.g. 1af, 2il, 3ydd, 4ydd

 Special cases of prepositions: Ar gyfer , Er mwyn , Yn erbyn, and Oddi followed by a

preposition

1.1.3. Init-time parameters

encoding -The character encoding to be used for reading the input

tokenizerRulesURL - The path to the Tokenizer rules files, the default file is located at

/resources/Tokeniser/WelshTokeniser.rule

transducerGrammarURL - The path to the post-processing transducer grammar, the default

JAPE file is located at /resources/Tokeniser/postprocess.jape

1.1.4. Run-time parameters

annotationSetName - The name for annotation set where the resulting Token annotations

will be created. It is optional, if left blank then the 'default' annotation set is assigned.

1.2. Sentence Splitter

The WNLT sentence splitter segments the text into sentences using the same set of JAPE

grammars used in ANNIE. Hence, it delivers annotations of type 'Sentence' and 'Split'. It also

makes available an alternative ruleset (main-single-nl.jape), which considers newlines and

carriage returns differently. The alternative ruleset, similarly to ANNIE, should be used when

a new line on the page indicates a new sentence.

1.2.1. Sentence Splitter Modifications

The WNLT sentence splitter uses a list of abbreviations adapted to Welsh that help

distinguish sentence marking full stops from other kinds. The abbreviations list contains 330

entries of the following categories:

 Linguistic e.g. abs (absolute), cfst (synonym)

https://gate.ac.uk/sale/tao/splitch8.html#chap:jape
https://gate.ac.uk/sale/tao/splitch6.html

WNLT version 2.3 19 April 2017

5

 Narrative eg Brth (British) , e.e (for example)

 Science e.g. Seic (Psychology), Tiwt (Teutonic)

 Spatial e.g. Morg (Glamorgan)

 Temporal e.g. C.C (B.C), Mer (Wednesday)

1.2.2. Init-time parameters

encoding - The character encoding to be used for reading the input

gazetteerListsURL - The path to the gazetteer list of abbreviations, the default list is located

at /resources/sentenceSplitter/gazetteer/lists.def

transducerURL - The path to transducer grammar, the default JAPE file is located at

/resources/sentenceSplitter/grammar/mainsingle-nl.jape

1.2.3. Run-time parameters

inputASName - The name of the annotation set used for input. It is optional, if left blank

then the 'default' annotation set is assigned.

outputASName - The name of the output annotation set where the resulting Split and

Sentence annotations will be created. It is optional, if left blank then the 'default'

annotation set is assigned.

1.3. Part of Speech Tagger

The WNLT POS tagger is a modified version of the ANNIE's Hepple tagger. The tagger

produces a part-of-speech tag as an annotation on each word or symbol. The list of tags

used by the tagger is found below. The tagger uses a default lexicon which is based on the

Free (GPL) Dictionary Eurfa v3.0.

1.3.1. List of Tags

CC - coordinating conjunction: e.g. a, ac, fel, fod
CD - cardinal number
DT - determiner: e.g. y, yr, 'r
IN - preposition: e.g. am, ap, mewn
INT - interrogative: e.g. beth, ble, sut etc.
JJ - adjective
JJR - adjective comparative
JJS - adjective superlative
NN - noun singular or mass
NNS - noun plural
NNP - proper noun singular
NNPS - proper noun plural
NNM - noun masculine
NNF - noun feminine
PDT - pre-determiner: preceding an article or possessive pronoun; e.g. ambell, prif, rhai etc.
PP - pronoun
RP - particle, such as; gor, mi, na, nac, ni, ni's

https://gate.ac.uk/sale/tao/splitch6.html#sec:annie:tokeniser
http://www.eurfa.org.uk/

WNLT version 2.3 19 April 2017

6

RB - adverb
UH - interjection, such as; eh, huh, nefi, sori etc
VB - verb, base form
VBD - verb past tens
VBDP - verb pluperfect
VBDI - verb imperfect
VBI - verb infinitive
VBF - verb future

PN - punctuation, such as ’'[](){} 、‒…-!.?‘’“”''";\\/⁄
SC - special characters, all other cases such as £$%* etc.

1.3.2. Part of Speech Tagger Modifications

The WNLT POS tagger uses a lexicon of 168669 pairs of terms and tags originating from the

Eurfa dictionary. A mapping exercise has mapped the original Eurfa tags

(http://www.eurfa.org.uk/abbrevs.php) to ANNIE Hepple tagger like tags. Major

modifications applied on the original POSTagger and Lexicon classes for classifying Welsh

input. The classes were extended to recognise linguistic evidence that support word

classification of unknown words beyond the limits of the Eurfa dictionary.

1.3.3. Init-time parameters

encoding - The character encoding to be used for reading lexicons and rules

lexiconURL - The path to the lexicon of terms-tags pairs, the default lexicon is located at

/resources/postag/lexicon

rulesURL - The path to the ruleset file, the default ruleset file is located at

/resources/postag/ruleset

1.3.4. Run-time parameters

inputASName - The name of the annotation set used for input

outputASName -The name of the annotation set used for output. This is an optional

parameter. If user does not provide any value, new annotations are created under the

default annotation set.

baseTokenAnnotationType - The name of the annotation type that refers to Tokens in a

document (run-time, default = Token)

baseSentenceAnnotationType - The name of the annotation type that refers to Sentences in

a document (run-time, default = Sentence).

outputAnnotationType - POS tags are added as category features on the annotations of

type ‘outputAnnotationType’ (run-time, default = Token)

http://www.eurfa.org.uk/abbrevs.php

WNLT version 2.3 19 April 2017

7

posTagAllTokens - If set to false, only Tokens within each ‘baseSentenceAnnotationType’

will be POS tagged (run-time, default = true).

FailOnMissingInputAnnotations - if set to false, the PR will not fail with an

ExecutionException if no input Annotations are found and instead only log a single warning

message per session and a debug message per document that has no input annotations

(run-time, default = true).

1.4. Morphological Analyser (Lemmatizer)

The Morphological Analyser takes as input a tokenized GATE document. Considering one

token and its part of speech tag, one at a time, it identifies its lemma, mutation form and in

some cases an affix. These values are then added as features on the Token annotation. The

WNLT Morphological Analyser has significantly extended the original GATE Morphological

Analyser to address the linguistic behaviour of Welsh with regards to inflection and

mutation. The tool uses regular expression rules, a Lexicon of term-lemma pairs, a Gazetteer

and a post-processing JAPE transducer for validating mutation propositions. The tool allows

users to add new rules or modify the existing resources on their requirements.

1.4.1. Morphological Analyser Modifications

The rule file default.rul, which is available under the /resources/morph directory is modified

for the Welsh alphabet. The file contains regular expressions that address regular and

irregular forms of plural constructs. More information on how to write these rules can be

found in GATE user guide at

https://gate.ac.uk/sale/tao/splitch23.html#sec:parsers:morpher:rules

The tool uses a Lexicon of 168794 term lemma pairs for providing known lemmas, a post-

processing JAPE transducer for the identification of mutation forms focusing on contact

mutations of Soft, Nasal and Aspirate type. The lemmatization process is as follows:

1. Lexicon Lookup, if is a known word provide lemma from lexicon and exit, else if

unknown proceed to 2

2. Regular Expressions rules, resolve lemma using rules and in any case proceed to 3

3. Post-processing Transducer, identify cases of contact mutation based on contextual

evidence. Propose new lemmas based on the contextual evidence and hard-coded

Welsh language rules and proceed to 4

4. Check the validity of the proposed lemmas against a gazetteer of 168785 valid

Welsh lemmas and 5885 Welsh place names. If lemmas validate set the new lemma

and exit, else proceed to 5

5. Revert invalid lemma to original non-mutated lemma form.

https://gate.ac.uk/releases/gate-6.0-build3764-ALL/doc/tao/splitch17.html#x22-45700017.7
https://gate.ac.uk/releases/gate-6.0-build3764-ALL/doc/tao/splitch17.html#x22-45700017.7
https://gate.ac.uk/sale/tao/splitch23.html#sec:parsers:morpher:rules

WNLT version 2.3 19 April 2017

8

1.4.2. Init-time parameters

caseSensitive - By default, all tokens under consideration are converted into lowercase to

identify their lemma and affix. If the user selects ‘caseSensitive’ to be true, words are no

longer converted into lowercase

encoding - The character encoding to be used for reading lexicons and rules

gazetteerListsURL - The path to the gazetteer list of valid lemmas, the default list is located

at /resources/morph/gazetteer/lists.def

lexiconURL - The path to the lexicon of terms-lemma pairs, the default lexicon is located at

/resources/morph/lexicon

rulesFile - The path to the file containing the regular expression patterns, the default file is

located at /resources/morph/default.rul

transducerURL - The path to post-processing transducer grammar responsible for

identification and proposition of mutations, the default JAPE file is located at

/resources/morph/grammar/postprocess.jape

validationTransducerURL - The path to transducer grammar responsible for validating

proposed mutations against the gazetteer of valid lemmas, the default JAPE file is located at

/resources/morph/grammar/validation-main.jape

1.4.3. Run-time parameters

affixFeatureName - Name of the feature that should hold the affix value.

rootFeatureName - Name of the feature that should hold the root value.

annotationSetName - Name of the annotation set that contains Tokens.

considerPOSTag - Each rule in the rule file might have a separate tag, which specifies which

rule to consider with what part-of-speech tag. If this option is set to false, all rules are

considered and matched with all words.

failOnMissingInputAnnotations - If set to true (the default) the PR will terminate with an

Exception if none of the required input Annotations are found in a document. If set to false

the PR will not terminate and instead log a single warning message per session and a debug

message per document that has no input annotations.

1.5. CymrIE

CymrIE is an Information Extraction (Named Entity Recognition) system for Welsh. The name

CymrIE is a paraphrasis of GATE's Information Extraction system ANNIE (A Nearly-New

Information Extraction System). CymrIE adapts ANNIE to Welsh input using a modified

version of the NE Transducer of ANNIE targeted at the requirements of the Welsh language,

for example adjective – noun constructs. The system is using a wide range of Welsh

https://gate.ac.uk/sale/tao/splitch6.html
https://gate.ac.uk/sale/tao/splitch6.html

WNLT version 2.3 19 April 2017

9

gazetteer lists to support the task of Named Entity Recognition while it maintains some of

the original lists with a focus on person names and place names. CymrIE does not currently

include a co-reference resolution processing resource.

The default annotation types, features and possible values produced by CymrIE the same

used in ANNIE and are based on the original MUC entity types, and are as follows:

 Person

o gender: male, female

 Location

o locType: region, airport, city, country, county, province, other

 Organization

o orgType: company, department, government, newspaper, team, other

 Money

 Percent

 Date

o kind: date, time, dateTime

 Address

o kind: email, url, phone, postcode, complete, ip, other

 Identifier

 Unknown

1.5.1. CymrIE Gazetteer lists

welsh_assembly_members, Major Type:person_full, Minor Type:government
welsh_charities, Major Type:organization, Minor Type:charity
welsh_coastal, Major Type:location, Minor Type:coastal
welsh_counties, Major Type:location, Minor Type:county
welsh_countries, Major Type:location, Minor Type:country
welsh_country_adj, Major Type:country_adj, Minor Type:COUNTRYADJ
welsh_country_denonyms, Major Type:country_adj, Minor Type:
welsh_currency_unit, Major Type:currency_unit, Minor Type:post_amount
welsh_date_key, Major Type:date_key, Minor Type:
welsh_date_unit, Major Type:date_unit, Minor Type:
welsh_days, Major Type:date, Minor Type:day
welsh_departments, Major Type:organization, Minor Type:government
welsh_facility, Major Type:facility, Minor Type:building
welsh_facility_key, Major Type:facility_key, Minor Type:
welsh_facility_key_ext, Major Type:facility_key_ext, Minor Type:
welsh_festival, Major Type:date, Minor Type:festival
welsh_goverment, Major Type:organization, Minor Type:government
welsh_govern_key, Major Type:govern_key, Minor Type:
welsh_greeting, Major Type:greeting, Minor Type:
welsh_hour, Major Type:time, Minor Type:hour

WNLT version 2.3 19 April 2017

10

welsh_ident_prekey, Major Type:ident_key, Minor Type:pre
welsh_jobtitles_cap, Major Type:jobtitle, Minor Type:
welsh_jobtitles_lower, Major Type:jobtitle, Minor Type:
welsh_jobtitles_sen, Major Type:jobtitle, Minor Type:
welsh_lakes, Major Type:location, Minor Type:lake
welsh_loc_generalkey, Major Type:loc_general_key, Minor Type:
welsh_loc_key, Major Type:loc_key, Minor Type:post
welsh_loc_prekey, Major Type:loc_key, Minor Type:pre
welsh_ministry, Major Type:organization, Minor Type:government
welsh_months, Major Type:date, Minor Type:month
welsh_mountains, Major Type:location, Minor Type:mountain
welsh_number_fold, Major Type:number_fold, Minor Type:
welsh_numbers, Major Type:number, Minor Type:
welsh_ordinals, Major Type:date, Minor Type:ordinal
welsh_org_base, Major Type:org_base, Minor Type:
welsh_org_key, Major Type:org_key, Minor Type:
welsh_org_pre, Major Type:org_pre, Minor Type:
welsh_parishes, Major Type:location, Minor Type:parish

WNLT version 2.3 19 April 2017

11

2. Using the WNLT in GATE Developer (GUI)
This chapter will take you through the basic steps of loading the CymrIE system and

processing a small corpus of BBC Cymru Fyw news stories. The guide is split into three

sections. The first section is about loading WNLT in GATE using the CREOLE plugin manager,

the second section is about loading CymrIE and processing a corpus, and the third section is

about creating, populating and processing a new corpus in CymrIE pipeline.

2.1. Loading WNLT in GATE

Step 1: From the File menu in GATE open the CREOLE Plug-in Manager by choosing the

Manage CREOLE Plugins option.

Step 2: From the new window (CREOLE Plug-in Manager) click on the plus sign located at the

top-left corner of the window.

Step 3: A new dialog box appears, click on the Select a Directory button and select the

directory WNLT which is located in your local drive to the place where you have

downloaded and extracted the WNLT-CymrIE.zip.

Step 4: Once you have selected WNLT from your drive click Open in the dialog box

Step 5: The path to WNLT should now appear in the white box of the dialog window, click

OK to close the window

WNLT version 2.3 19 April 2017

12

Step 6:The WNLT plugin should now appear in the list of plugins as seen below. Check the

Load Now checkbox, click on Apply All button and Close the CREOLE Plug-in Manager

window

2.2. Loading the CymrIE system in GATE

Step 1: From the File menu in GATE load CymrIE by choosing the Restore Application from

File option.

WNLT version 2.3 19 April 2017

13

Step 2: Select the file CYMRIE.gapp located in the WNLT folder and click Open

Step3 : Inspect the loaded Processing Resources at the right hand side of GATE . You should

see list of processing resources like the one below. Also the corpus BBC Cymru Fyw is loaded

under the Language Resources and the wnlt-datastore is loaded under Datastores.

WNLT version 2.3 19 April 2017

14

Step 4: Double click on CymrIE application and the pipeline will appearing on screen as seen

below

Step 5: The BBC Cymru Fyw corpus should be already selected as the corpus for processing

as see below if not selected it from the dropdown box

Step 6: Click on Run this Application button

WNLT version 2.3 19 April 2017

15

Step 7: Double click (or right click and open) on BBC Cymru Fyw corpus located in Language

Resources to view the list of documents contained in the corpus.

Step 8: Double click (or right click and open) on any of the documents in the corpus to open

it

WNLT version 2.3 19 April 2017

16

Step 9: Under the Language Resources double click (or right click and show) a document

from the list to view its contents

Step 10: Click on Annotation Sets to view the annotations produced by the pipeline.

2.3. Adding a New Corpus in GATE

Step 1: From the File menu create a GATE Corpus by choosing New Language Resource >

GATE Corpus

Step 2: In the pop-up dialog box name the Corpus e.g. MyCorpus and click the OK button

Step 3: The new corpus should now appear on the left side panel under Language Resources

WNLT version 2.3 19 April 2017

17

Step 4: Save the corpus to the wnlt-datastore by right-clicking on the corpus icon and

selecting Save to Datastore

Step 5: From the pop-up dialog box select wnlt-datastore and click the OK button

Step 6: From the File menu create a GATE Document by choosing New Language Resource >

GATE Document

Step 7: In the new dialog box

a) Give a Name to the document, in this example 'Pryder am gynllun'

b) In the encoding field type utf-8

c) Select the document by typing a web address (URL) in this example

'http://www.bbc.co.uk/cymrufyw/35867934'

Alternative c) Instead of typing a web address you can Open a document from your local

drive by clicking the Folder button on the right hand side and selecting a local document of

your preference (list of supported document formats at

https://gate.ac.uk/sale/tao/splitch5.html#x8-940005.5)

https://gate.ac.uk/sale/tao/splitch5.html#x8-940005.5

WNLT version 2.3 19 April 2017

18

Step 8: Double click on the Corpus (My Corpus) icon located under the Language Resources

to open the Corpus Editor

Step 9: Click on the Green Cross button (circled in red below) to open the Add document(s)

to this corpus dialog box

Step 10: Select the document (in this case Pryder am gynllun) and click the OK button

Step 11: Double click on CYMRIE application (located in Applications) to view the pipeline as

seen below.

Step 12: Select MyCorpus from the Corpus drop-down box

WNLT version 2.3 19 April 2017

19

Step 13: Click the Run this Application button to execute the pipeline.

Step 14: Double click the 'Pryder am gynllun' document icon from the Language Resources

to view the document

Step 15: Click on Annotation Sets button to reveal the produced annotations

Step 16: Toggle the Annotation Types ON and OFF from the left hand side panel by checking

- unchecking the relevant boxes.

WNLT version 2.3 19 April 2017

20

3. WNLT’s graphical user interface (GUI)
The WNLT’s graphical user interface (GUI) can be launched by double clicking the wnlt.jar

file in the root directory of WNLT’s folder. After the application is launched, the GATE API

and the CymrIE information extraction system will be initialised. The initialisation process

uses multiple threads and unavoidably utilises a lot of the CPU.

This application allows the user to use the CYRMIE information extraction system to

tokenize, lemmatize, find part of speech tags, get token types, get orthographies, get named

entities and get lookups performed by the CymrIE system.

3.1. Functionality

The user can add URLs, Files and Welsh text to the application by using the ‘Add documents’

part of the application.

After documents (Files, URLs and/or Welsh text) are added, the user can select particular

documents to display more information, documents are selected from the ‘Corpus’ part of

the application.

WNLT version 2.3 19 April 2017

21

The CymrIE information extraction system runs on the user selected document and the

system’s output is displayed in the ‘CymrIE Output’ part of the application.

The ‘CymrIE Output’ part of the application shows the output of the CymrIE information

extraction system which is organised into different tabs. The ‘Tokens’ tab outputs each

token on a separate line.

WNLT version 2.3 19 April 2017

22

The ‘Lemmas’, ‘Part Of Speech’, ‘Token Types’ and ‘Orthography’ tabs output their results

corresponding to each token in the ‘Tokens’ tab.

The ‘Sentences’ tab outputs all of the sentences found by the CymrIE information extraction

system on each line. As each sentence can span multiple tokens and words the following

information is given in order:

 The start character offset in the URL, File or String for the sentence (inclusive)

 The end character offset in the URL, File or String for the sentence (exclusive)

 The corresponding start token (see Tokens tab) of the sentence (inclusive)

 The corresponding end token (see Tokens tab) of the sentence (inclusive)

 The sentence as a String

An example:

4166 4325 780 825 Pan o'n nhw'n danglo carot o flaen ein trwyn ni a cynnig ysgol £5m i ni, a oedd yn

deg i ni i droi'r ysgol yna nawr, a'r plant yn diodde, falle, o achos hynny?

The ‘Named Entities’ tab outputs all of the named entities found by the CymrIE information

extraction system on each line. As each named entity can span multiple tokens and words

the following information is given in order:

 The start character offset in the URL, File or String for the named entity (inclusive)

 The end character offset in the URL, File or String for the named entity (exclusive)

 The corresponding start token (see Tokens tab) of the named entity (inclusive)

 The corresponding end token (see Tokens tab) of the named entity (inclusive)

 The type of named entity

 An array of features about the named entity

 The named entity as a String

An example:

662 678 100 102 Date {rule=DateName, ruleFinal=DateOnlyFinal, kind=date} 15 Tachwedd 2016

The ‘Lookup’ tab outputs the gazetteer lookups performed by the CymrIE information

extraction system. As each lookup can span multiple tokens and words the following

information is given in order:

 The start character offset in the URL, File or String for the lookup (inclusive)

 The end character offset in the URL, File or String for the lookup (exclusive)

 The corresponding start token (see Tokens tab) of the lookup (inclusive)

 The corresponding end token (see Tokens tab) of the lookup (inclusive)

 The lookup’s ‘majorType’ value

 The lookup’s ‘minorType’ value

 The lookup as a String

WNLT version 2.3 19 April 2017

23

An example:

407 410 66 66 organization company BBC

For more information on the ‘majorType’ and ‘minorType’ values see the section 1.5.1.

The ‘CymrIE’ tab shows the CymrIE information extraction system’s output in GATE’s xml

format. The output of this tab can be seen in the image above.

3.2. Menu

The File menu provides the user with additional functionality, as can be seen by the

following image.

The ‘New’ menu item removes all of the documents in the application. The ‘User Guide’

menu item shows this user guide. The ‘About’ menu item displays some information about

the WNLT project.

The ‘Save’ menu item opens a dialog which allows the user to choose what CymrIE output to

save and the directory to the save this information. This dialog saves the selected CymrIE

outputs of each URL, File and String of Welsh text in the corpus.

WNLT version 2.3 19 April 2017

24

4. WNLT’s command line interface (CLI)
Users can use WNLT via the command line interface (CLI) by running the wnlt.jar file from a

command line interface. To display the help message of the WNLT CLI, use the following

command in the WNLT project’s root directory:

java -jar wnlt.jar help

This will output the following message:

The command line interface of the WNLT needs three arguments in order from the user:

1. Command – The data that the user wishes to save after the executing the CymrIE

information extraction system. The commands are listed in the image.

2. Input file – The input file or URL which contains Welsh text

3. Output file – The file to output the results of the CymrIE information extraction

system.

The user can use the CYRMIE information extraction system to tokenize, lemmatize, find

part of speech tags, get token types, get orthographies, get named entities and get lookups

performed by the CymrIE system.

As mentioned in the help message, to following arguments will tokenize the content of the

Cam-drin_plan.txt file and save the tokens to outputFile.txt

java -jar wnlt.jar lemmatize “Cam-drin_plan.txt” “outputFile.txt”

The results in the output files are the same as described in chapter 2.

WNLT version 2.3 19 April 2017

25

5. WNLT API
The CymrIE information extraction system and all of its processing resources can be utilised

in Java code by using the WNLT API. The WNLT API also provides higher level functionality

such as tokenization and lemmatisation without using the GATE API directly, see 5.3. The

user can access the WNLT API using the classes located in the Java package wnlt.api

The following sections outline the setup process for including the WNLT API in an existing

Java project, how to use the WNLT API to create and reuse components of the CymrIE

information extraction system and how to use the CymrIE class which hides the GATE API

from the user.

Users who do not wish to use the GATE API or the data structures provided by the GATE API

should first follow the instructions outlined in section 5.1 then skip to section 5.3.

5.1. Setting up the WNLT API

WNLT has been developed using the framework provided by the GATE API (GATE

Embedded). In order to use the WNLT API, the GATE API also needs to be included in the

build path of the user’s Java project.

The following sections will outline the setup process using an Eclipse IDE. The quickest way

to setup a Java project for the WNLT API is outlined in section 5.1.1. To setup your Java

project to use the latest or an existing version of GATE, refer to section 5.1.2.

5.1.1. Quick setup

Step 1: Include all of the necessary .jar files in your project’s build path. These are all the .jar

files located in the WNLT’s lib folder and the wnlt.jar file located in the root directory of the

WNLT folder.

It is recommended that the user creates a folder called lib in the root directory of the user’s

Java project then copy all of the .jar files into that folder.

Step 2: In Eclipse, click “Project” from the menu bar -> “Properties” -> “Java Build Path” ->

“Libraries”

WNLT version 2.3 19 April 2017

26

Click “Add External JARs” then add all the .jar files in step 1.

Click “Apply” then “OK”

Step 3: Copy the ‘plugins’ and ‘resources’ folder into your Java project’s root directory.

WNLT version 2.3 19 April 2017

27

5.1.2. Updating to the latest version of GATE

If the steps in section 5.1.1 have been followed then ignore the following steps as your

project is already setup.

Step 1: Download the latest version of GATE’s binary, source and documentation via

https://gate.ac.uk/download/

Step 2: Extract the contents of GATE’s zip folder

Step 3: Include all of the necessary .jar files in your project’s build path. These are all the .jar

files located in GATE’s lib folder and the gate.jar file located in GATE’s bin folder.

It is recommended that the user creates a folder called lib in the root directory of the user’s

Java project then copy all of the .jar files into that folder.

In Eclipse, click “Project” from the menu bar -> “Properties” -> “Java Build Path” ->

“Libraries”

https://gate.ac.uk/download/

WNLT version 2.3 19 April 2017

28

Click “Add External JARs” then add all the necessary .jar files in step 3.

Click “Apply” then “OK”

Step 4: Copy wnlt.jar located in the root directory of the WNLT folder into your Java

project’s lib folder and add it to the your project’s build path, instructions in previous setup.

WNLT version 2.3 19 April 2017

29

Step 5: Copy the ‘plugins’ and ‘resources’ folder into your Java project’s root directory.

5.2. Using the CymrIEUtilities class

CymrIE is an information extraction (named entity recognition) system for the Welsh

language. The CymrIE information extraction system is accessible to Java developers from

the CymrIEUtilities class located in the Java package wnlt.api. The following sections will

outline key parts of the GATE API and outline the CymrIEUtilities class.

The WNLT has been developed using the framework provided by the GATE API. For this

reason, the CymrIEUtilities class produces the CymrIE information extraction system and all

of its processing resources as Java Objects from within the GATE framework. The

CymrIEUtilities class enables GATE Embedded developers to use, reuse and adapt the

components of the WNLT in new or existing GATE Embedded projects. Though the

functionality exposed by the CymrIEUtilities class is targeted towards GATE Embedded

developers, non-GATE Embedded developers can use the CymrIEUtilities class with help

from the examples in the following sections.

The WNLT API also contains a CymrIE class which hides the GATE API code from the user.

Non-GATE Embedded developers may wish to use the CymrIE class which is outlined in this

chapter below in section 5.3.

5.2.1. Corpus (GATE API class)

The CymrIE information extraction system processes Corpus Objects located in the Java

package gate. The following code creates a Corpus with a Document.

1. try {
2. Gate.runInSandbox(true);
3. Gate.init(); // Initialise GATE
4. } catch (GateException e) {
5. e.printStackTrace();
6. }
7.
8. Corpus corpus = Factory.newCorpus("StandAloneAnnie corpus");
9. Document doc = Factory.newDocument(new

URL("http://www.bbc.co.uk/cymrufyw/37655968"));
10. corpus.add(doc);

Line 2 tells GATE not to load any local configuration files when initialising.

Line 3 initialises GATE. This needs to be executed before functions are called by GATE’s

Factory class.

Line 8 creates a Corpus using GATE’s Factory class. The GATE API requires GATE Objects to

be created using the Factory class.

Line 9 creates a Document using GATE’s Factory class.

WNLT version 2.3 19 April 2017

30

Line 10 adds the Document to the Corpus.

A Corpus Object holds a collection of Documents. More information can be obtained from

GATE Embedded’s user guide

5.2.2. CymrIEUtilities

The CymrIEUtilities class has a function called getCymrIE() that creates a new instance of

the CymrIE information extraction system in one line of code, see line 2 of code snippet

below. This CymrIE Object mimics the functionality seen in the CymrIE application in the

GATE Developer graphical user interface, see chapter 3.

1. try {
2. ConditionalSerialAnalyserController cymrie = CymrIEUtilities.getCymrIE();
3. Corpus corpus = getCorpus();
4. cymrie.setCorpus(corpus);
5. cymrie.execute();
6.
7. } catch (GateException e) {
8. e.printStackTrace();
9. } catch (IOException e) {
10. e.printStackTrace();
11. }

Line 4 sets a Corpus of documents to the CymrIE system then line 5 executes the CymrIE

system on those documents within the Corpus.

After the execute() function is run, the documents within the Corpus are annotated with

metadata by the CymrIE information extraction system. The user can extract information

from those annotations, such as tokens, lemmas, part of speech tags, token types,

orthographies, named entities and lookups performed by the CymrIEU system. More

information on how to extract this information from annotations can be found in section

5.2.3.

The CymrIEUtilities class also allows the user to get preconfigured processing resources

used in the CymrIE information extraction system. Each processing resource in the CymrIE

system can be obtained from the following functions in the CymrIEUtilities class,

 getAnnotationDelete()

 getWelshTokeniser()

 getWelshSentenceSplitter()

 getWelshPOSTagger()

 getWelshMorph()

 getFlexibleGazetteer()

 getANNIETransducer()

https://gate.ac.uk/sale/tao/splitch7.html#x11-1550007

WNLT version 2.3 19 April 2017

31

The CymrIEUtilities class provides functions to get the default configurations of each

processing resource, for example, the getWelshTokeniserDefaultParameters() function

returns the default parameters used in the Welsh tokenizer processing resource of the

CymrIE information extraction system. The CymrIEUtilities class also provides functionality

that creates the processing resource given user specified parameters, for example

getWelshTokeniser(FeatureMap). The following snippet of code reuses the CymrIE system

and changes the ‘listsURL’ parameter of the DefaultGazetteer process resource.

WNLT version 2.3 19 April 2017

32

1. try {
2. ConditionalSerialAnalyserController cymrieController = new ConditionalSerialAnalyserController();
3. cymrieController.setName("Modified CymrIEUtilities");
4.
5. // Replace the listsURL parameter's value using CymrIEUtilities's default parameters
6. FeatureMap defaultGazetteerParameters = CymrIEUtilities.getDefaultGazetteerDefaultParameters();
7. defaultGazetteerParameters.replace("listsURL", new File("gazetteer/lists.def").toURI().toURL());
8. DefaultGazetteer defaultGazetteer = (DefaultGazetteer) CymrIEUtilities.getDefaultGazetteer(defaultGazetteerParameters);
9.
10. // Create flexible gazetteer using the new default gazetteer
11. FeatureMap flexibleGazetteerParameters = CymrIEUtilities.getFlexibleGazetteerDefaultParameters(defaultGazetteer);
12. ProcessingResource flexibleGazetteer = CymrIEUtilities.getFlexibleGazetteer(flexibleGazetteerParameters);
13.
14. // Copied and modified from the getCymrIEUtilities() function
15. ArrayList<ProcessingResource> prsArrayList = new ArrayList<ProcessingResource>();
16. prsArrayList.add(CymrIEUtilities.getAnnotationDelete());
17. prsArrayList.add(CymrIEUtilities.getWelshTokeniser());
18. prsArrayList.add(CymrIEUtilities.getWelshSentenceSplitter());
19. prsArrayList.add(CymrIEUtilities.getWelshPOSTagger());
20. prsArrayList.add(CymrIEUtilities.getWelshMorph());
21. prsArrayList.add(flexibleGazetteer); // add modified ProcessingResource
22. prsArrayList.add(CymrIEUtilities.getANNIETransducer());
23.
24. // Set Processing resources and initialise
25. cymrieController.setPRs(Collections.synchronizedList(prsArrayList));
26. cymrieController.init();
27. } catch (GateException e) {
28. e.printStackTrace();
29. } catch (IOException e) {
30. e.printStackTrace();
31. }

WNLT version 2.3 19 April 2017

33

5.2.3. AnnotationSet (GATE API class)

After the CymrIE information extraction system has been executed on a corpus, the

documents within the corpus are annotated with metadata by the CymrIE information

extraction system, such as tokens, lemmas, part of speech tags, token types, orthographies,

named entities and lookups performed by the CymrIE system. The following snippet of code

shows how the AnnotationSet (which contains many annotations) can be obtained.

1. try {
2. ConditionalSerialAnalyserController cymrie = CymrIEUtilities.getCymrIE();
3. Corpus corpus = getTestCorpus();
4. cymrie.setCorpus(corpus);
5. cymrie.execute();
6.
7. Iterator<Document> iterator = corpus.iterator();
8.
9. while(iterator.hasNext()) {
10. Document document = iterator.next();
11. AnnotationSet annotationSet = document.getAnnotations();
12. }
13. } catch (GateException e) {
14. e.printStackTrace();
15. } catch (IOException e) {
16. e.printStackTrace();
17. }

The following snippet of code shows how to retrieve all the lemmas of each token of a

Document.

WNLT version 2.3 19 April 2017

34

1. Document document = corpus.get(0); // first Document
2. AnnotationSet annotationSet = document.getAnnotations(); // get all annotations
3. Node node = annotationSet.firstNode(); // start from the beginning of the document
4. ArrayList<String> lemmas = new ArrayList<String>(); // create an ArrayList to store all lemmas
5.
6. while(node != null) {
7. AnnotationSet orderedAnnotation = annotationSet.get(node.getOffset()); // get annotations given the current

position in the document
8.
9. if(orderedAnnotation.getAllTypes().contains("Token")) { // if AnnotationSet contains a Token annotation then
10. Iterator<Annotation> annotationIter = orderedAnnotation.get("Token").iterator(); // get Token annotations
11. lemmas.add((String)annotationIter.next().getFeatures().get("lemma")); // There is only one annotation, get

the lemma value
12. }
13.
14. node = annotationSet.nextNode(node); // move to next node (next position in the document)
15. }

The AnnotationSet and Annotation Objects are data structures generated by the GATE API. Documentation for the AnnotationSet and

Annotation data structures can be found in GATE Embedded’s user guide.

https://gate.ac.uk/sale/tao/splitch7.html#x11-1590007.4

WNLT version 2.3 19 April 2017

35

5.2.4. Known Issues

When creating a new corpus or document, developers must create these resources using

GATE’s Factory class. GATE creates references to those resources so to delete those

references (and free up memory for the Garbage collector), developers must use the

Factory class’s deleteResource() function and must not have any references to the corpus or

document within their own code.

Some processing resources such as CymrIEUtilitie’s ConditionalSerialAnalyserController

cannot be completely dereferenced using the Factory class’s deleteResource() function. For

this reason, the developer should limit the number of created instances. For most developer

use cases, only one instance of CymrIEUtilitie’s ConditionalSerialAnalyserController is

needed.

WNLT version 2.3 19 April 2017

36

5.3. Using the CymrIE class

The CymrIE class is located in the Java package wnlt.api. This class provides functionality for

typical use cases of the CymrIE information extraction system. This class is targeted towards

non-GATE Embedded developers and hides all GATE API code from the user.

This class contains self-explanatory functions that accept File(s), URL(s) or String(s) (String(s)

of Welsh text) and functions that return the CymrIE information extraction system’s

tokenization, lemmatization, part of speech tags, token types, orthographies, sentences,

named entities and lookups performed by the CymrIE system. The functions are outlined in

the following image.

CymrIE inherits from IESystem.

The following code finds the tokens and named entities in the content of two Files. The

returned result is a two dimensional array where the first index indexes the File (or URL or

String) and the second index indexes the result for that File. In the example below, the

second index indexes the token (Line 8) and the named entity (Line 9).

1. try {
2. CymrIE cymrie = new CymrIE();
3. cymrie.setFiles(new File[] {
4. new File("TestData1.txt"),
5. new File("TestData2.txt")
6. });
7.
8. String[][] tokens = cymrie.getTokens();
9. NamedEntity[][] namedEntities = cymrie.getNamedEntities();
10. } catch (GateException | IOException e) {
11. e.printStackTrace();

12. }

Named entities, lookups and sentences are returned as Objects which encapsulate all the

information about the named entity, lookup and sentence. See following image for the

information that can be obtained from these Objects.

WNLT version 2.3 19 April 2017

37

The NamedEntity, Lookup and SentenceSplit Objects inherit from the AnnotationResult class

which encapsulates information about the character offsets and token indexes of the

NamedEntity, Lookup or SentenceSplit.

WNLT version 2.3 19 April 2017

38

6. TwitterCymrIE
Twitter is a social media platform where users can share content such as tweets. A tweet a

short message that is no longer than 140 characters. As tweets cannot be longer than 140

characters in length, users tend to shorten words, use slang, acronyms and abbreviations to

fit their message into a tweet. Tweets are user generated making tweets prone to spelling

errors.

TwitterCymrIE is an information extraction system for Welsh tweets. TwitterCymrIE reuses

the processing resources found in CymrIE and adapts the processing resources found in the

TwitIE information extraction system that is available in GATE Developer. The Tweet

Normaliser processing resource in TwitIE is of particular interest as it attempts to correct

spelling mistakes, shorten words, slang etc.

In addition to the processing resources outlined in chapter 1 for the CymrIE information

extraction system, TwitterCymrIE has adapted the following five processing resources from

TwitIE:

 Annotation set transfer

 Language identification

 Emoticons Gazetteer

 Hashtag Gazetteer

 Tweet Normaliser

Each processing resource will be discussed in more detail in subsequent sections.

6.1. Annotation set transfer

The annotation set transfer processing resource identifies the tweet and the metadata

associated with the tweet. If the supplied document is a JSON file obtained by using the

Twitter API then the tweet and metadata is extracted from the JSON file. If the file is not a

JSON file the whole text is treated as a tweet. More information on what metadata is

available from Twitter JSON files can be found at

https://dev.twitter.com/overview/api/tweets

A ‘user mention’ is a word or phrase with no spaces starting with the @ symbol. A ‘user

mention’ is a particular user on Twitter. A hashtag is a word or phrase with no spaces

starting with the # symbol. A hashtag is a form of metadata that allows users to categorise

their tweet. Examples of user mentions and hashtags are shown in the following figure.

https://dev.twitter.com/overview/api/tweets

WNLT version 2.3 19 April 2017

39

This processing resource enables TwitterCymrIE to execute subsequent processing

resources only on the tweet and not the whole Twitter JSON file. This processing resource

generates the Tweet, Hashtag, UserID and URL annotations.

6.1.1. Run-time parameters

annotationTypes – if annotation type names are specified for this list, only candidate

annotations of those types will be transferred or copied. If an entry in this list is specified in

the formOldTypeName=NewTypeName, then annotations of type OldTypeName will be

selected for copying or transfer and renamed to NewTypeName in the output annotation

set.

copyAnnotations – this specifies whether the annotations should be moved or copied. The

default value false will move annotations, removing them from

the inputASName annotation set. If set to true the annotations will be copied.

inputASName – this defines the annotation set from which annotations will be transferred

(copied or moved). If nothing is specified, the Default annotation set will be used.

outputASName – this defines the annotation set to which the annotations will be

transferred. This default value for this parameter is ‘Filtered’. If it is left blank the Default

annotation set will be used.

tagASName – this defines the annotation set which contains the annotation covering the

relevant part of the document to be transferred. This default value for this parameter is

‘Original markups’. If it is left blank the Default annotation set will be used.

textTagName – this defines the type of the annotation covering the annotations to be

transferred. The default value for this parameter is ‘BODY’. If this is left blank, then all

annotations from the inputASName annotation set will be transferred. If more than one

WNLT version 2.3 19 April 2017

40

covering annotation is found, the annotation covered by each of them will be transferred. If

no covering annotation is found, the processing depends on

the copyAllUnlessFound parameter.

transferAllUnlessFound – this specifies what should happen if no covering annotation is

found. The default value is true. In this case, all annotations will be copied or moved

(depending on the setting of parameter copyAnnotations) if no covering annotation is

found. If set to false, no annotation will be copied or moved.

6.2. TextCat Language identification

The TextCat language identification processing resource attempts to identify the language of

the tweet. The TextCat processing resource is available in GATE Developer. The creators of

TwitIE generated their own language models to identify whether a tweet is English, Spanish,

German, Dutch or French. This processing resource is intended to choose what processing

resources to execute next depending on the language of the tweet. TwitterCymrIE and

TwitIE assume the language (Welsh and English respectively) and do not make use of this

functionality but others are welcome to make use of this functionality.

TwitIE’s language identification processing resource results were replicated using the same

tweets that were used in the training and out of sample datasets (though some tweets were

deleted so they were excluded from the dataset). The training datasets for each language

model contained between 300-400 tweets and the out of sample datasets for each language

model contained between 400-500 tweets. Using the same out of sample dataset, TextCat’s

default language models were tested. For both language identification systems, a Welsh

language model created from 400 welsh tweets was included and tested. The average

performance can be seen from the following table.

No Welsh language model With Welsh language model

TextCat TwitIE TextCat TwitIE

Accuracy 95.48% 95.55% 96.78% 96.51%

Precision 89.02% 90.26% 90.09% 90.45%

Recall 88.57% 88.88% 89.78% 89.00%

NPV 97.11% 97.19% 98.03% 97.89%

Specificity 97.26% 97.30% 98.15% 97.95%

F-Score 88.65% 89.02% 89.80% 89.34%

Without the Welsh language models, TwitIE’s adapted language models derived from real

tweets slightly outperformed the default language models supplied by TextCat. The

performance differences between the TextCat and TwitIE language identification systems

can be seen in the table below. The difference in performance is very small but there is a

1.25% increase in average precision in the TwitIE model.

WNLT version 2.3 19 April 2017

41

No Welsh language model With Welsh language model

Accuracy -0.07% 0.27%

Precision -1.25% -0.37%

Recall -0.31% 0.78%

NPV -0.08% 0.14%

Specificity -0.04% 0.20%

F-Score -0.37% 0.46%

The result is different when including the default Welsh language model in TextCat and the

Welsh language model created from Welsh tweets in TwitIE. The average precision of TwitIE

is only 0.37% better than TextCat and the other performance metrics show TextCat

outperforming TwitIE.

TwitterCymrIE uses the default language models (Welsh, English, Spanish, German, Dutch

and French) distributed with TextCat to classify the language of the tweet. The TextCat

processing resource adds a “lang” feature to the “Tweet” annotation generated by the

Annotation set transfer processing resource.

6.2.1. Init-time parameters

configURL – The list of TextCat language models used to determine the language of the

tweet.

6.2.2. Run-time parameters

annotationSetName – The annotation set used for input and output; ignored

if annotationType is blank.

annotationType – If this is supplied, the PR classifies the text underlying each annotation of

the specified type and stores the result as a feature on that annotation. If this is left blank

(null or empty), the PR classifies the text of each document and stores the result as a

document feature.

languageFeatureName – The name of the document or annotation feature used to store

the results.

6.3. Emoticons Gazetteer

The emoticons gazetteer processing resource uses a gazetteer to normalise emoticons such

as :-) and :} to the emoticon :). This processing resource generates the Emoticon annotation.

6.3.1. Init-time parameters

caseSensitive – By default the gazetteer looks for matches irrespective of capital letters. If

the user selects ‘caseSensitive’ to be true, words are no longer converted into lowercase.

encoding – The character encoding to be used for reading the input.

WNLT version 2.3 19 April 2017

42

gazetteerFeatureSeparator – The unique sequence of characters that separates the key and

value in the listsURL file.

listsURL – The path to the gazetteer for normalizing emoticons.

6.3.2. Run-time parameters

annotationSetName – By default, left blank. The annotation set used for input and output;

ignored if annotationType is blank.

longestMatchOnly – If true then the longest match in the gazetteer is used.

wholeWordsOnly – If true then only match whole words.

6.4. Hashtag tokenizer

A hashtag is a word or phrase that is used as a form of metadata to help categorise the

tweet, see image below. The only constraints for hashtags are that they must only be

alphanumeric characters with no spaces. Users can use hashtags to indicate the event or

theme of the tweet or help others find their tweet by searching for the hashtag.

This processing resource attempts to split the hashtag into multiple words, to do this the

hashtag tokenizer does two things:

 Uses JAPE rules to identify camel casing (there is no constraint that the user must

use camel casing in their tweets).

 Uses the Eurfa dictionary and named entities used in the CymrIE information

extraction system to break up the hashtag into words.

6.4.1. Init-time parameters

gazetteerURL – The path to the gazetteer for Welsh words.

6.4.2. Run-time parameters

inputASName – The name of the annotation set used for input. It is optional, if left blank

then the 'default' annotation set is assigned.

WNLT version 2.3 19 April 2017

43

outputASName – The name of the annotation set used for output. This is an optional

parameter. If user does not provide any value, new annotations are created under the

default annotation set.

6.5. Tweet Normaliser

This processing resource attempts to correct spelling mistakes as well as normalising slang

and shortened words.

Spelling mistakes are corrected by using the Eurfa dictionary and other gazetteers using in

the CymrIE information extraction system. Spelling mistakes are corrected by comparing the

Levenshtein distance between each word, if a word is found in the gazetteers with a

Levenshtein distance of 2 or less then it is corrected to that word.

To normalise slang a specialised gazetteer is used that contains Welsh slang and English

slang normalizations. This gazetteer takes words such as ‘l8r’ and normalises it to ‘later’.

After this processing resource is executed, it replaces the feature ‘string’ of the ‘Token’

annotation with the normalised word and moves the original word to a new feature called

“origString” within the “Token” annotation.

6.5.1. Init-time parameters

dictURL – Path to dictonary of words for correcting words with some Levenshtein distance.

orthURL – Path to common normalisation terms. For example, ‘b4’ -> ‘berfore’.

6.5.2. Run-time parameters

initialTextFeature – Feature on Token annotations in the input AS that contains the token

string.

inputASName – The name of the annotation set used for input. It is optional, if left blank

then the 'default' annotation set is assigned.

maxDistance – Maximum Levenshtein distance to correct words.

normTextFeature – Feature to which the normalized text should be saved.

origTextFeature – Feature to which the original text should be saved.

outputASName – The name of the annotation set used for output. This is an optional

parameter. If user does not provide any value, new annotations are created under the

default annotation set.

6.6. GATE Developer

TwtterCymrIE can be used within the GATE Developer graphical user interface by following

these instructions.

Step 1: From the File menu in GATE choose the Restore Application from File option.

WNLT version 2.3 19 April 2017

44

Step 2: Select the file TwitterCYMRIE.gapp file located in the WNLT folder and click Open

The TwitterCymrIE application is now loaded into GATE Developer and can be used in a

similar fashion as outlined in 2.2 Loading the CymrIE system in GATE. There is a corpus of

Welsh JSON tweets in the wnlt-datastore, to open the datastore follow the instructions

outlined in section 2.3 Adding a New Corpus in GATE.

6.7. WNLT’s GUI

The main functionality of CymrIE in WNLT’s GUI is described in chapter 3. As well as the

CymrIE information extraction system the TwitterCymrIE information extraction system can

be used. Tweets can be imported by selecting the Twitter tab in the bottom left corner of

the application, see image below.

WNLT version 2.3 19 April 2017

45

The “Copy & Paste” tweet button allows the user to paste a raw tweet in a separate dialog

and the other buttons and text fields surrounded by the text “Twitter JSON import” allow

the user to load JSON sources supplied by Twitter’s API.

After selecting a document in the corpus an additional tab called “Normalisation (Twitter)”

is visible which displays all of the normalisations that took place using the TwitterCymrIE

information extraction system.

6.8. WNLT’s CLI

Chapter 4 outlines how to use the WNLT’s command line interface. As can be seen from the

help message produced by the command line interface below, there is an additional

command for Twitter JSON sources called ‘normalisation’. This command saves all of the

normalisations that took place using the TwitterCymrIE information extraction system. As

the TwitterCymrIE information extraction system is based on CymrIE, all of the other

commands can be used on Twitter JSON sources.

WNLT version 2.3 19 April 2017

46

6.9. WNLT API

Instructions on how to setup the WNLT API and use CymrIE is detailed in chapter 5. This

section expends on chapter 5 and outlines the functionality for Twitter.

6.9.1. Using the TwitterCymrIEUtilities class

The TwitterCymrIEUtilities class is located in the Java package wnlt.api.twitter. The class

has a function called getTwitterCymrIE() that creates a new instance of the TwitterCymrIE

information extraction system in one line of code, see line 2 of code snippet below.

1. try {
2. ConditionalSerialAnalyserController cymrie =

TwitterCymrIEUtilities.getTwitterCymrIE();
3. Corpus corpus = getCorpus();
4. cymrie.setCorpus(corpus);
5. cymrie.execute();
6.
7. } catch (GateException e) {
8. e.printStackTrace();
9. } catch (IOException e) {
10. e.printStackTrace();
11. }

The TwitterCymrIEUtilities class also allows the user to get preconfigured processing

resources used in the TwitterCymrIE information extraction system. In addition to the

processing resources in the CymrIE information extraction system, other processing

resources in TwitterCymrIE can be obtained from the following functions in the

TwitterCymrIEUtilities class:

 Annotation set transfer()

 Language identification()

 Emoticons Gazetteer()

 Hashtag Gazetteer()

WNLT version 2.3 19 April 2017

47

 Tweet Normaliser()

The default parameter settings for each of these processing resources can also be obtained

by calling the functions with the DefaultParameters suffix.

6.9.2. Using the TwitterCymrIE class

The TwitterCymrIE class is located in the Java package wnlt.api.twitter. This class provides

functionality for typical use cases of the TwitterCymrIE information extraction system. This

class is targeted towards non-GATE Embedded developers and hides all GATE API code from

the user.

This TwitterCymrIE Object behaves similarly to CymrIE with the addition of an extra method

to obtain the normalisations performed by TwitterCymrIE and some functions in the

IESystem class were overridden. The functions are outlined in the following images.

TwitterCymrIE inherits from CymrIE which inherits from IESystem.

The functions in the IESystem class were overridden to explicitly set each data source’s

mime type to be of the Twitter JSON format. The only exception is the setString and

setStrings methods accept tweet(s) and place each String into the Twitter JSON format so

that it can be treated as Twitter JSON. More information about each method in the

TwitterCymrIE class can be found in the supplied Javadoc documentation.

